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Abstract

Vortex–lattice dynamics has been studied in superconducting Nb thin films with periodic arrays of magnetic pinning centers. Magnetotransport

measurements have been used to study vortex–lattice velocity as a function of the in-plane direction of the driving force. This has been done for

samples with arrays of decreasing anisotropy, from rectangular arrays (two-fold symmetry) to square arrays (four-fold symmetry). Strongly

guided vortex motion along privileged directions has been found in the former, but not in the latter. The results are discussed in terms of

channeling effects.

q 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Vortex–lattice dynamics on artificially induced pinning
landscapes has attracted increasing interest during the last
years. With the new nano-lithography techniques, it has
become possible patterning superconducting thin films with
ordered arrays of nano-objects (antidots, blind holes, magnetic,
metallic or insulating dots, etc.) [1]. The characteristic lengths
of these ordered arrays, such as the dots diameter or the lattice
parameter of the arrays, are controllable within the submicro-
metric scale. This is the size of the relevant lengths governing
the pinning of vortices, i.e. the coherence length xS and the
penetration length l, what makes that these arrays of nano-dots
create a very efficient pinning potential for the vortex–lattice.
As a result, by patterning superconducting thin films with these
artificial arrays, one may literally design the pinning potential
landscape for the vortex–lattice.

There are a number of interesting phenomena arising in
these nano-patterned superconductors, as for instance com-
mensurability effects [2–6]. In these effects, the geometric
matching between the vortex–lattice and the underlying
periodic pinning potential strongly pins the vortex lattice,
what yields enhanced critical currents [5] (or reduced
dissipation [6]). Another interesting related issue has emerged
recently: the possibility of reliably controlling the vortex–

lattice motion by using suitable pinning potential landscapes.
For instance, it has been shown that asymmetric (ratchet)
pinning potentials rectify vortex dynamics, in the sense that a
net flow of the vortex-lattice arises when a not biased ac
driving force is applied to it [7].

In this paper, we report on another kind of experiments,
also related with the issue of controlled vortex motion. In
particular, we report on guided vortex motion along privileged
directions, which are defined by arrays of magnetic dots. We
have previously reported [8] that, in Nb thin films with
rectangular arrays of magnetic dots, guided vortex motion
develops along directions far away from the direction of the
applied driving force. In the present paper, we study this effect
as a function of the anisotropy of the array of magnetic dots.
Magnetotransport experiments have allowed us studying
Vortex–lattice velocity as a function of the direction of the
applied driving force (Lorentz force). We have performed
these experiments for arrays with different decreasing
anisotropy, from rectangular arrays (two-fold symmetry) to
square arrays (four-fold symmetry), and also as a function of
the applied magnetic field. We will show that guided vortex
motion progressively smears out as the anisotropy of the array
is reduced.

2. Experimental

Periodic arrays of magnetic (Ni) dots were fabricated using
e-beam lithography techniques on Si (100), following the usual
steps [1]. Ni thickness (dots height) is 40 nm and a super-
conducting Nb film 100 nm thick covers them. We have
fabricated arrays with different symmetries: samples A and B
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have rectangular arrays (two-fold symmetry), with lattice
parameters a!bZ400!500 nm2 and a!bZ400!625 nm2,
respectively [see Fig. 1(a)] whilst sample C has a square array
(four-fold symmetry), with lattice parameters a!bZ500!
500 nm2 [see Fig. 1(b)]. Dots diameter is for all samples fZ
200 nm. Critical temperatures were TcZ8.75 K for sample A,
TcZ8.63 K for sample B and TcZ8.40 K and for sample C.

Magnetotransport experiments (dc) were done in a liquid
He cryostat provided with a superconducting magnet and a
variable temperature insert that allows controlling temperature
with stability of 1 mK. The magnetic field was applied
perpendicular to the film plane and thus always perpendicular
to the injected transport current. Samples were patterned with
a cross-shaped measuring bridge by using optical lithography
and ion-etching. This bridge allows injecting in the sample
two crossing currents (Jx and Jy), and also simultaneously
measuring with two nanovoltmeters the voltage drops along
two perpendicular directions VxZV3KV2 and VyZV1KV2

[see Fig. 1(c)]. With this arrangement, we can control the
direction and intensity of the driving force (Lorentz force) on
the vortex–lattice: taking into account ðFLZ ðJ! ðnf0 (with
fZ2.07!10K15 Wb and ðn a unitary vector parallel to the
applied magnetic field), each one of the orthogonal injected
currents yield the components FxZJyf0 and FyZJxf0.
Therefore, the resulting magnitude of the driving force is FLZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FxCFy

p
and its direction qZarctanðFx=FyÞZarctanðJy=JxÞ.

Using the expression for the electric field ðEZ ðB!ðv, where ðB
is the applied magnetic field and ðv the vortex–lattice velocity,
we calculate the vortex–lattice velocity components vjZ
Vi= dBð Þ from the measured voltage drops Vi (with d the
distance between contacts). Thus we obtain the magnitude
vZ

ffiffiffiffi
vx

p
Cvy and direction aZarctagðvx=vyÞ of the vortex–

lattice velocity. A sketch with definition of angles and
directions with respect to the lattice vectors of the array of
dots is depicted in Fig. 1(d).

3. Results and discussion

The vortex–lattice velocity as a function of the applied
magnetic field, but at constant temperature and constant
magnitude of the driving force FL, is shown in Figs. 2–4 for
samples A, B and C, respectively. There are two panels in each
one of those figures. In panel (a), the direction a of the vortex–
lattice velocity is shown, and in (b) its magnitude v, for several
different directions q of the driving force.

The dc magnetoresistance in the mixed state of samples with
periodic arrays of pinning centers exhibits well-known
commensurability phenomena [6]. For given applied magnetic
fields, geometrical matching between the vortex–lattice and the
periodic pinning potential develops. At these matching fields,
the interaction between the vortex–lattice and the array of
magnetic dots is enhanced, i.e. the pinning force is optimized.
Because of this the Vortex–lattice moves slower, yielding
reduced dissipation.

Samples with two-fold symmetry A and B show two
different regimes [see Fig. 2 (b) and Fig. 3(b)] concerning the
matching fields. In the low-field regime, minima appear when
magnetic field yields an integer number of vortices per unit
cell; for sample B it is DHlowZ104 Oe (DHZf0/abZ103 Oe),
while it is DHlowZ84 Oe (DHlowZf0/abZ82.9 Oe) for
sample A. In the high-field regime, the minima corresponds
to matching between the vortex–lattice parameter and the
rectangular array short side a, showing up DHhighZ122 Oe for
sample B and DHhighZ130 Oe for sample A (in quite good
agreement with DHhighZf0/a

2Z129 Oe). The transition
between those two different regimes has been explained in
terms of the reconfiguration in the vortex lattice from
rectangular to square geometry [9]. Additionally, fractional
matching effects [10] are present for sample B [see Fig. 3 (b)],
for which swallow but clear minima appear at fields
0.5DHlowZ52 Oe and 1.5DHlowZ156 Oe. Matching fields do
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Fig. 1. (a), (b) SEM images of the arrays of samples A and C, respectively. (c) Micrograph of the measuring bridge. The area where currents cross is 40!40 mm2, and

the one containing arrays is 90!90 mm2 (darker region). (d) Sketch with notation and definition of angles and directions.
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not depend on the direction q of the driving force. However, the
magnitude v of the vortex–lattice velocity strongly depends
on q. For both samples A and B, at low applied magnetic
fields, the vortex–lattice velocity is reduced more than one
order-of-magnitude when the driving force is rotated from qZ
08 to qZ608 [See Figs. 2(b) and 3(b)]. For qZ908, at low
applied magnetic fields, the vortex–lattice velocity falls below
measurable values at this magnitude FL of the driving force.
Moreover, as can be seen in Fig. 2(a) and Fig. 3(a), the

direction of motion of the vortex–lattice a is not parallel to the
driving force q. In the low field regime, a is locked in at aZ0
for all q i.e.vortex lattice moves guided along the short lattice-
vector of the a of the rectangular array, even though the driving
force is applied far away from it [8]. Easy-flow paths
(channels) guiding the vortex–lattice lie along the direction
whose inter-dots distance is smaller. The physical origin of
these channels is the overlap of the pinning potential wells
existing around each one of the magnetic dots in the array. The
smaller is the inter-dots distance, the wider is the overlap, what
yields the channels along the direction of the shortest lattice
vector of the rectangular array [11]. The strongly guided vortex
motion progressively smears out as magnetic field is increased.
For sample A (the more anisotropic, a!bZ400!625 nm2 ),
Vortex–lattice velocity starts to rotate towards the direction of
the driving force a/q above the fourth matching field
(Hw0.4 kOe), being a progressively closer to q as magnetic
field is increased. For sample B (a!bZ400!500 nm2) the
vortex–lattice motion is no longer locked in along channels
above the third matching field (Hw0.3 kOe). The fact that
guided vortex motion is smeared out as applied magnetic field
increases is expected. As H gets higher, vortices get closer, and
vortex–vortex interactions become stronger, progressively
washing out effects coming form the pinning potential.

For sample C (four-fold symmetry), local minima in the
vortex–lattice velocity occurs when the applied magnetic field
yields an integer number of vortices per unit cell of the array.
Accordingly, minima are observed with period DHZ80 Oe
[see Fig. 4(b)], in good agreement with the expected value
DHZf0=abZ82::8 Oe (with aZbZ500 nm). As can be seen
the v(H) curves are similar for all the directions q of the driving
force. Matching fields are independent on the direction q of the
driving force. Also the magnitude of the vortex–lattice velocity
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Fig. 2. Vortex–lattice velocity v and direction of motion a for sample A (a!
bZ400!625 nm2 ) as a function of the applied magnetic field, at TZ0.98Tc,

and applied driving force FLZ5.17!10K7 NmK1, for different qZ08 (black
squares), 308 (hollow circles), 458 (black triangles), 608 (hollow triangles) and
908 (black diamonds).
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Fig. 3. Vortex–lattice velocity v and direction of motion a for sample B (a!
bZ400!500 nm2) as a function of the applied magnetic field, at TZ0.99Tc,
and applied driving force FLZ2.58!10K7 NmK1, for different qZ08 (black
squares), 308 (hollow circles), 458 (black triangles), 608 (hollow triangles) and

908 (black diamonds).
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Fig. 4. Vortex–lattice velocity v and direction of motion a for sample C (a!
bZ500!500 nm2)as a function of the applied magnetic field, at TZ0.995Tc,
and applied driving force FLZ2.58!10K7 NmK1, for different qZ08 (black
squares), 308 (hollow circles), 458 (black triangles), 608 (hollow triangles) and

908 (black diamonds).

J.E. Villegas et al. / Journal of Physics and Chemistry of Solids 67 (2006) 482–485484



v is similar for all angles q. In [Fig. 4(a)], the direction a of the
vortex–lattice velocity is shown as a function of the applied
magnetic field. For this four-fold symmetry array, the vortex–
lattice velocity is always essentially parallel to the direction of
the driving force, azq, at all applied magnetic fields. That is,
there is not guided vortex motion on the square array of
magnetic dots. This is at variance to what was expected from
theoretical simulations [12], and to the results reported from
experiments on Pb thin films with square arrays of holes [13].
In these works, it was found that guided vortex motion
develops along the main symmetry axes of the square array.
The fact that this is not observed in our sample might be
explained by assuming that the square array of magnetic dots
produces identical easy-flow channels along two perpendicular
directions, those of the lattice vectors a of the array. This is
indeed expected from our results for the rectangular arrays. The
existence of channels along two perpendicular directions
would allow the vortex–lattice following the direction of the
driving force, by conveniently switching in a zigzag motion
from channels along one direction to channels along the other.
Further experiments are required to clarify this scenario.

4. Conclusions

We have studied vortex–lattice dynamics as a function of
the direction of the driving force on pinning potential
landscapes created by arrays on magnetic dots with different
symmetries. In samples with rectangular arrays (two-fold
symmetry), vortex dynamics is highly anisotropic, showing up
strongly guided vortex motion along the short lattice-vector of
the array. This effect is slowly smeared out as the applied
magnetic field is increased. Samples with square arrays (four-
fold symmetry), on the contrary, show up isotropic vortex

dynamics, in which the motion of the vortex–lattice essentially
follows the direction of the driving force.
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